Final Presentation Outline

I. Building Overview

Three slides for introduction to project

II. Existing Mechanical System

Two slides for exposure to existing mechanical system

III. Mechanical Depth Design

One slide to introduce proposed redesign

IV. Demand Control Ventilation

Two slides to explain investigation of demand control ventilation advantages

V. Mechanical Design Alternatives

Two slides discussing proposed design alternatives

VI. Energy and Cost Analyses

Four slides discussing energy & cost of design alternatives as well as final selection and system diagrams

VII. Breadth 1 – Electrical Study

Four slides to discuss analysis of a photovoltaic array

VIII. Breadth 2 - CM Study

Four slides to discuss highlights of construction management study

IX. Conclusions

One slide to reiterate design selection and recommendations

X. Acknowledgements

One slide

XI. Appendix

Additional Slides For Reference – number to be determined at a later date.

Slide Count Summary

Introduction - 5

Depth - 9

Breadth 1 - Electrical - 4

Breadth 2 - CM - 4

Conclusions - 2

Total = 24 + appendix

^{*}Sample Slides from the presentation follow for reference.

Building Overview

Existing Mechanical System Mechanical Design Alternatives Mechanical Depth Design Demand Control Ventilation

Energy & Cost Analyses

Breadth 1 - Photovoltaic Array Study Breadth 2 – CM Study

Conclusions

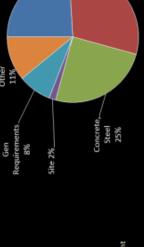
Acknowledgements

■ sensible solar gain (Btu/h)

Mech/Plumb 24%

Project Cost Breakdown

sensible glass transmission (Btu/h)


transmission (Btu/h) sensible wall

3% 3% 2% 3%

sensible lighting load (Btu/h)

sensible Misc equipment (Btu/h) Sensible People load(Btu/h)

Finishes 30%

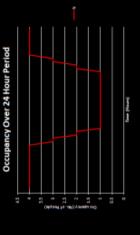
Existing Mechanical System Mechanical Depth Design

Mechanical Design Alternatives

Energy & Cost Analyses

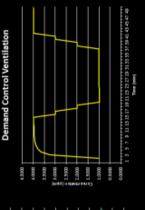
Conclusions

Breadth 2 – CM Study


Schedule

Demand Control Ventilation Building Overview

Breadth 1 - Photovoltaic Array Study


Acknowledgements

Demand Control Ventilation

Natural Ventilation with Constant ACs

 $c(t+\Delta t) = c(t)^* e^{\Lambda(-n^*\Delta t)} + (\underline{cb} + (N^*q)/(n^*V))^* (1-e^{\Lambda(-n^*\Delta t)})$

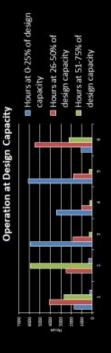
Schedule

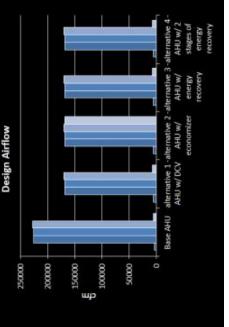
Existing Mechanical System Mechanical Depth Design Demand Control Ventilation **Building Overview**

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 - Photovoltaic Array Study Breadth 2 - CM Study

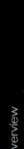

Conclusions


Acknowledgements

The four design alternatives studied

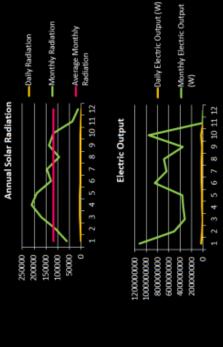
- Base AHU

- AHU w/ DCV
 AHU w/ DCV and Economizer
 AHU w/ DCV and Economizer
 AHU w/ DCV and I stage of Energy Recovery via Fixed Plate
 K (OA Preconditioning)
 AHU w/ DCV and 2 Stages of Energy Recovery. Fixed Plate HX
 & Runaround Coil Loop



Existing Mechanical System Mechanical Design Alternatives Mechanical Depth Design Demand Control Ventilation **Building Overview**

Breadth 2 - CM Study


Conclusions

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Acknowledgements

æ	Monthly Electric
	Output
0	1.401E+18
'n	1.389E+22
91	9.904E+20
115	4.487E+20
20	1.722E+20
22	3.564E+20
30	1.177E+24
35	1.044E+21
40	6.104E+20
45	3.497E+20